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The Vector Random Decrement technique has previously been introduced as an
e$cient method to transform ambient responses of linear structures into Vector
Random Decrement functions which are equivalent to free decays of the current
structure. The modal parameters can be extracted from the free decays. Due to the
speed and/or accuracy of the Vector Random Decrement technique, it was
introduced as an attractive alternative to the Random Decrement technique.
In this paper, the theory of the Vector Random Decrement technique is extended
by applying a statistical description of the stochastic processes describing the
ambient measurements. The Vector Random Decrement functions are linked to the
correlation functions of the stochastic processes provided they are stationary
and Gaussian distributed. Furthermore, a new approach for quality assessment of
the Vector Random Decrement functions is given on the basis of the derived
results. The work presented in this paper makes the theory of the Vector
Random Decrement technique equivalent to the theory of the Random Decrement
technique. The theoretical derivations are illustrated by the analysis of the response
of a 3DOF system loaded by white noise.
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1. INTRODUCTION

Assignments such as, for example updating of a theoretical model, force
identi"cation or inspection and reliability evaluation motivate the performance of
vibration testing of large structures. Usually, the purpose of a vibration test is to
estimate the modal parameters of the structure, which can then be used for further
analysis of the dynamic behaviour of the structure. This indirectly assumes that
the vibrations at the measurement points of the structure can be modelled by
a viscously damped linear lumped mass parameter system of "nite size

MX̂(t)#CX0 (t)#KX(t)"F(t), (1)
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Figure 1. Outline diagram for modelling of loads by using a shaping "lter. h(t) is the impulse
response matrix. U

F
contains the mode shapes of the "lter. D

F
contains the eigenvalues and m

F
is

a normalizing matrix.
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where M, C and K are the square mass, damping and sti!ness matrices of size n. X(t)
is the stochastic response vector to the stochastic load vector F(t) both of size n]1.

In testing of large structures, such as bridges, ambient excitation (tra$c,
wind, micro-tremors, etc) is very attractive, since it does not require that the
structure is taken out of service. The unmeasurable ambient forces are modelled
mathematically as white noise excitation at the lumped masses of the mathematical
model of the structure; see equation (1). In order to make the force modelling more
versatile it can be generalized to white noise passed through a linear shaping "lter,
see reference [1, 2].

The mathematical modelling of the ambient forces makes the theory equivalent
to the situation where the structure has been excited by arti"cal white noise applied
by a shaker.

If the structure and the forces can be modelled as described above it is well
known that the correlation functions RXX(q) of the measurements X(t) are equiva-
lent to the response of the structure to initial conditions only; see, e.g. references
[2}4]. The ith column in the correlation matrix, RX

i
(q) is given by

RX
i
(q)"U1 eK1 qC

i
, q'0, (2)

where U1 is the mode shape matrix with the mode shapes of the structure and the
"lter, K1 is a diagonal matrix with the eigenvalues of the structure and the "lter. The
C

i
vector can be interpreted as a weighting vector or an initial condition vector,

which depends on U1 , K1 , the modal masses of the structure and the "lter and the
covariance matrix of the white noise process W (t).

The e!ect of the force shaping "lter is that it is not necessary to assume that the
forces are white noise. The "lter can shape the force spectral density to be non-#at
and thereby introduce correlation. The consequence is that the mathematical
modes used to model the shape of the spectral density of the force are present in the
correlation functions of the responses.

If the correlation functions of the responses are estimated, the results of equation
(2) state that the modal parameters of the structure and the force modelling can
be extracted by using well-known methods like Polyreference Time Domain
technique, Ibrahim Time Domain technique, Auto-Regressive Vector models, etc.
These methods are developed to extract modal parameters from the free responses
of linear lumped mass parameter systems.

The correlation functions can be estimated by using several di!erent algorithms
such as for example the direct approach or an unbiased FFT-IFFT approach, see
reference [5]. Another algorithm is the Random Decrement (RD) technique. This
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algorithm has recently been applied to ambient measurements [6}11]. The main
advantage of the RD technique is the speed [19, 20].

The auto, D
XX

(q), D
YY

(q) and cross, D
YX

(q) D
XY

(q), RD functions of two stationary
stochastic processes, X (t) and >(t) are de"ned as conditional mean values,

D
XX

(q)"E[X(t#q) D¹
X(t)

], D
XY

(q)"E[X(t#q) D¹
Y(t)

],

D
YX

(q)"E[>(t#q) D¹
X(t)

], D
YY

(q)"E[>(t#q) D¹
Y(t)

], (3)

where ¹
X(t)

denotes the triggering condition, which in the most general case can be
formulated as the applied general triggering condition, ¹GA

X(t)
,

¹GA
X(t)

"Ma
1
)X(t)(a

2
, b

1
)XQ (t)(b

2
N. (4)

All speci"c triggering conditions can be formulated from ¹GA
X(t)

. In application to
ambient testing, the banded positive triggering condition ¹P

X(t)
, is usually applied:

¹P
X(t)

"Ma
1
)X (t)(a

2
N. (5)

The RD functions are estimated as empirical mean values,

DK
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(q)"
1
N

N
+
i/1

x (t
i
#q) D¹

x(ti)
, DK

XY
(q)"

1
N

N
+
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x (t
i
#q) D¹

y(ti)
,
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(q)"
1
N

N
+
i/1

y(t
i
#q) D¹

x(ti)
, DK

YY
(q)"

1
N

N
+
i/1

y (t
i
#q) D¹

y(ti)
, (6)

which assumes that the stochastic processes are ergodic. x(t) and y(t) are
realizations of X(t) and > (t) and N denotes the number of triggering points.
N depends not only on the length of the realizations, but also on the choice of a

1
,

a
2

and b
1
, b

2
.

The RD technique was introduced [12}15] as a method to transfer the random
response of a SDOF system to the free decays of the SDOF system. Later the RD
technique was extended to multiple measurements/multiple modes by introduction
of equation (6) in combination with the ITD algorithm [16, 17]. The theoretical
background of the RD technique was extended by linking the RD functions to
correlation functions [18, 19, 2]. If the processes X(t) and > (t) are Gaussian
distributed, the following relation holds for the applied general triggering condition
[19, 2]:
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X

aJ
X
!

R@
XX

(q)
p2
XQ

bI
XQ
, D

XY
(q)"

R
XY

(q)
p2
Y

aJ
Y
!

R@
XY

(q)
p2
YQ

bI
YQ
,

D
YX

(q)"
R

YX
(q)

p2
X

aJ
X
!

R@
YX

(q)
p2
XQ

bI
XQ
, D

YY
(q)"

R
YY
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!
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(q)
p2
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, (7)

Here R
XX

, R
YY

are autocorrelation functions, R
YX

and R
XY

are cross-correlation
functions, R@ denotes the time derivative of R, p

X
, p

Y
are standard deviations of
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X and >, p
X0
, p

Y0
are standard deviations of the time derivative of X and >,

respectively, and
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X
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xp
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p
X
(x) dx
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(y) dy

,
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"
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xR p
XQ
(xR ) dxR

P
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XQ
(xR ) dxR

, bI
YQ
"

P
a2

a1

yR p
YQ
(yR ) dyR

P
a2

a1

p>Q (yR ) dyR
, (8)

where for example p
X
(x) denotes the density function of X. The results of the RD

technique under the above modelling of the structure and the loads are parallel
to the results of applying the FFT algorithm, because the RD functions are
proportional to the correlation functions of the responses.

The advantages of the RD technique are the simple and fast estimation algorithm
compared to the FFT algorithm. Results of simulation studies [19, 20] indicate that
the RD technique is faster than an unbiased FFT-IFFT approach. Furthermore,
the RD technique provides unbiased estimates of the correlation functions [2].

No matter which approach is used to estimate correlation functions, problems
arise in the analysis of several simultaneously recorded measurements. The
problem is that if n measurements are used, n columns with n correlation functions
can be estimated. If n is a large number it becomes computationally di$cult to
estimate a full correlation matrix corresponding to n2 correlation functions. Instead
only a single or a few columns of the correlation matrix could be estimated. But this
opens another problem, because the columns of the correlation matrix have to be
chosen carefully. Not all modes will necessarily be properly represented in all
columns and also the signal-to-noise ratio of the measurements should be taken
into consideration. If a measurement is known to have a high content of noise,
the measurement should only be used for averaging and not as a triggering
measurement.

These problems motivated the development of the Vector Random Decrement
(VRD) technique [21}23] as a computationally e$cient method to transfer random
responses to free responses.The di!erence between the RD and the VRD technique
is that for the VRD technique the triggering condition is a vector condition. In
references [21, 22] the theory which links the VRD functions to the free responses
of the measurements is given.

The main issue of this paper is to present a theoretical proof for the relation
between the VRD functions and the correlation functions of the stochastic
processes describing the collected measurements. This means that the VRD
technique theoretically becomes as well described as the RD technique. In section 2,
the VRD functions are de"ned and the di!erent possibilities for the formulation of
the technique are described. It is shown that the VRD technique can be considered
to be a generalization of the RD technique. In section 3, the theoretical proof for the
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link between the VRD functions and the correlation functions is given. In section 4,
a simple example which illustrates the advantages of the VRD technique compared
to the traditional methods for estimation of correlation function is given. The paper
is "nished with a conclusion.

2. DEFINITION OF VRD FUNCTIONS

Consider a stationary stochastic vector process X(t)"[X
1
(t)X

2
(t)X

3
(t)2

X
k~1

(t)X
k
(t) X

k`1
(t)2X

l~1
X

l
(t)X

l`1
(t)2X

n
(t)]T, l'k. The VRD functions

are de"ned as the conditional mean value of the process X (t),

DXX
k, l
(q)"E[X(t#q) D¹vX

k, l (t`Dt)
], (9)

where q is the time variable of the VRD functions de"ned for both positive and
negative time and ¹vX

k, l(t`Dt)
is the vector triggering condition given by

¹vX
k, l(t`Dt)

"¹vX
k(t`Dtk),Xk`1 (t`Dtk`1),2 ,Xl(t`Dtl)

, 2)k(l)n. (10)

The size of the vector triggering condition is by de"nition greater than or equal to
two. If there only is one condition the original formulation for the RD technique is
obtained. Physically, a vector triggering condition can be interpreted as a vector
which forces the responses to have certain well-de"ned initial conditions before
time segments are picked out and averaged. The VRD technique di!ers from the
RD technique not only by the size of the condition but also by the time shifts
introduced to the conditions at the individual elements of the vector process X(t).
The time shifts are introduced in order to make the vector triggering condition
more versatile. The exact formulation of ¹vX

k, l(t`Dt)
is discussed in section 3.

By assuming that X (t) is ergodic, the VRD functions can be estimated from
a single realization of X(t),

D< XX
k, l
(q)"

1
N

N
+
i/1

x(t
i
#q) D¹vx

k, l(ti`Dt)
, (11)

where x (t) is a realization of X(t). The estimation of the VRD functions is unbiased:

E[D< XX
k, l
(q)]"

1
N

N
+
i/1

E[X(t
i
#q) D¹vX

k, l(ti`Dt)
]"DXX

k, l
(q). (12)

In the formulation of ¹vX
k, l(t`Dt)

it is important to take into account that the
estimation using equation (11) should contain su$cient triggering points so that
the estimate converges to the mean value.

In order to illustrate the VRD technique, the following stationary stochastic
vector process is considered: X (t)"[X

1
(t)X

2
(t)X

3
(t)X

4
(t)X

5
(t)X

6
(t)X

7
(t)X

8
(t)].

Four di!erent sets of VRD functions could be de"ned by the following triggering
conditions:

¹vX
1,2(t`Dt)

"¹vX
1(t`Dt1),X2(t`Dt2)

, ¹vX
3,4(t`Dt)

"¹vX
3(t`Dt3),X4(t`Dt4)

,

¹vX
5,6(t`Dt)

"¹vX
5(t`Dt5),X6(t`Dt5)

, ¹vX
7,8(t`Dt)

"¹vX
7(t`Dt7),X8(t`Dt8)

. (13)
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Alternatively, only two sets of VRD functions could be de"ned by using the
following triggering conditions:

¹vX
1,5(t`Dt)

"¹vX
1(t`Dt1),X2(t`Dt2),X3(t`Dt3),X4(t`Dt4),X5(t`Dt5)

,

¹vX
6,8(t`Dt)

"¹vX
6(t`Dt6),X7(t`Dt7),X8(t`Dt8)

. (14)

Here the vector sizes 3 and 5 have been used instead of 4 and 4 for illustration
purposes. This example shows how versatile the VRD technique is, since the vector
size of the triggering condition can be chosen in several di!erent ways.

3. STATISTICAL THEORY OF THE VRD TECHNIQUE

The stationary stochastic vector process X (t) de"ned in section 2 is considered
again. It is furthermore assumed that X(t) is zero mean Gaussian distributed. The
correlation matrix of X(t) at any time di!erence q is de"ned as

RXX(q)"E[X(t#q)X(t)T]

"

R
X1X1 (q) R

X1X2 (q) 2 R
X1Xn (q)

R
X2X1 (q) R

X2X2 (q) 2 R
X1Xn (q)

: : :

R
XnX1 (q) R

XnX2(q) 2 R
XnXn (q)

, (15)

which for simplicity can be rewritten as

RXX(q)"[R
X1

R
X2

2R
Xk
2R

Xt
2R

Xn
], (16)

where

RX
i
"[R

X1Xi
R

X2Xi
2R

XkXi
2R

XlXi
2R

XnXi
]T . (17)

To develop the theory of the VRD technique, two stochastic vector processes, X
v
(t)

and Y
v
(t) which both are contained in X (t), are considered:

X
v
(t)"

X
1
(t#q)

X
2
(t#q)

:

X
k
(t#q)

X
k`1

(t#q)

:

X
l
(t#q)

:

X
n
(t#q)

, Y
v
(t)"

X
k
(t#Dt

k
)

X
k`1

(t#Dt
k`1

)

:

X
l
(t#Dt

l
)

. (18)
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Here X
i
( ) ) refers to the elements of the vector process X(t). The time shifts Dt

i
could

be both positive and negative. The size of the stochastic vector proces Y
v
(t) is

restricted to be smaller than or equal to the size of X
v
(t). The auto correlation

matrix of Y
v

at the time lag zero is given by

RY
v
Y

v
"E[Y

v
(t)YT

v
(t)]

"

R
XkXk

(0) R
XkXk`1

(Dt
k
!Dt

k`1
) 2 R

XkXl
(Dt

k
!Dt

l
)

R
Xk`1Xk

(Dt
k`1

!Dt
k
) R

Xk`1Xk`1
(0) 2 R

Xk`1Xl
(Dt

k`1
!Dt

l
)

: : : :

R
XlXk

(Dt
l
!Dt

k
) R

XlXk`1
(Dt

l
!Dt

k`1
) 2 R

XiXl
(0)

.

(19)
The cross-correlation matrix between X

v
and Y

v
at time lag zero is given by

RX
v
Y

v
"E[X

v
(t)YT

v
(t)]

"

R
X1Xk

(q!Dt
k
) R

X1Xk`1
(q!Dt

k`1
) 2 R

X1Xl
(q!Dt

l
)

R
X2Xk

(q!Dt
k
) R

X2Xk
`1(q!Dt

k`1
) 2 R

X2Xl
(q!Dt

l
)

: : : :

R
XnXk

(q!Dt
k
) R

XnXk`1
(q!Dt

k`1
) 2 R

XnXl
(q!Dt

l
)

(20)

The vector triggering condition is now de"ned as a vector level crossing triggering
condition:

¹LY
v(t`Dt)

"MX
k
(t#Dt

k
)"y

k
,2, X

l
(t#Dt)"y

l
N. (21)

The name vector level crossing triggering condition is used because a discrete-time
measurement will never ful"ll the above conditions. Instead the condition is ful"lled
when all l measurements crosses the lines y

i
from either above or below. Because

X(t) has been assumed to have, a zero mean, the conditional mean value can
be calculated from the standard results for zero mean Gaussian processes (see
reference [24]),

E[X
v
D¹LY

v(t`Dt)
]"E[X

v
DY

v
"y

v
]"RX

v
Y

v
)R~1Y

v
Y

v
) y

v
, (22)

where a triggering level vector, a8 , is de"ned as

a8 "R~1Y
v
Y

v
) y

v
, a8 "[aJ

k
aJ
k`12

aJ
l
]T, y

v
"[yJ

k
yJ
k`12

yJ
l
]T, (23)

and yJ
k
is the chosen triggering level for the kth measurement. The VRD functions

can be rewritten by using equation (23):

DvX (q#Dt)"E[X
v
D¹LY

v(t`Dt)
]"RX

v
Y

v
) a8 . (24)

The VRD functions are thereby given as a sum of correlation functions determined
solely from the formulation and size of the vector triggering condition:

DvX (q)"R
Xk

(q!Dt
k
) ) aJ

k
#R

Xk`1
(q!Dt

k`1
) ) aJ

k`1
#2#R

Xl
(q!Dt

l
) ) aJ

l
. (25)
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Notice that if k"l and Dt
k
"0 in equation (21), the traditional RD formulation for

the level triggering condition is obtained

D
X1X1

(q)"R
X1X1

(q) ) aJ
1
"

R
X1X1

(q)
p2
X1

) a
1
. (26)

The probability that Y
v
"y

v
occurs is very small. This means that the expected

number of triggering points can easily be too small to achieve a VRD function
which has converged acceptably. Instead, a vector triggering condition where each
triggering measurement must be in between two values is formulated. This will
increase the number of triggering points. The condition will be denoted as the
vector positive point triggering condition:

¹pY
v(t`Dt)

"Ma
k
)X

k
(t#Dt

k
))b

k
,2, a

l
)X

l
(t#Dt

l
))b

l
N. (27)

All sets of a
i
and b

i
must have the same sign. The maximum number of triggering

points is always obtained by choosing a"0 and b"DRD . In order to link this
triggering condition with the results from equations (19) and (20) the result in
equation (24) are used
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=
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,
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v
Y

v
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v
)
1
k
1
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b

a

y
v
pY

v
(y

v
) dy

v
,

"RX
v
Y

v
) a8 . (28)

Here p is the probability density function and the triggering level a8 is now de"ned as

a8 "
R~1Y

v
Y

v

k
1
P

b

a

y
v
) p(y

v
) dy

v
, k

1
"P

b

a

pY
v
(y

v
) dy

v
. (29)

So the vector positive point triggering condition gives results equivalent to the
vector level crossing triggering condition:

DvX (q)"R
Xk

(q!Dt
k
) ) aJ

k
#R

Xk`1
(q!Dt

k`1
) ) aJ

k`1
#2#R

Xl
(q!Dt

l
) ) aJ

l
. (30)

Only the weights, aJ
i
, of the correlation functions have changed. In partice, only the

vector positive point triggering condition is of interest, since this is the only
triggering condition which results in a reasonable number of triggering points.

In conclusion, the VRD functions are a sum of a number of correlation functions
corresponding to the size of the vector condition. The result in equation (30) is
important since the modal parameters can be extracted from the VRD functions by
using the methods mentioned in section 2. The advantage of the VRD technique is
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that by performing only, a single set of VRD functions, information from several
correlation functions is available. For example for the FFT-IFFT approach a
corresponding algorithm is not formulated.

A single problem arises when methods developed to extract modal parameters
from free decays are used to extract modal parameters from VRD functions. These
methods can deal only with positive time lag correlation functions. The decays
should dissipate with increasing time lags. This is not the case for the part of the
correlation functions which has negative time lags. This also means that the VRD
functions cannot be used directly as input to the ITD or PTD methods. First of all,
only the part of the VRD functions with q*0 can be used. Furthermore, a number
of points corresponding to max(Dt

i
) should be removed from all functions. Other-

wise, a part from the correlation functions with negative time lags is used in the
modal parameter extraction procedure, see equation (30). This can result in highly
erroneous damping ratios.

3.1. CHOICE OF TIME SHIFTS

Another problem is to choose the time shifts Dt
k
, Dt

k`1
,2, Dt

l
so that the

maximum number of triggering points is obtained. The obvious possibility is to
estimate a column in the correlation matrix at several positive as well as negative
time points using the traditional RD technique. To obtain the maximum number of
triggering points for the VRD technique, the time shifts Dt

i
can be chosen from

max( DD
XiXj

(q) D)NDt
i
"q. (31)

Notice that the time shift corresponding to i"j will always be Dt
i
"0 which is

always the time lag with maximum value for the autocorrelation functions of
a stationary process. If D

XiXj
(Dt

i
) is negative, the triggering levels, a

i
and b

i
should

also be negative.

3.2. QUALITY ASSESSMENT

In application of the VRD technique, it is convenient to have a standard
procedure to assess the quality of the estimated VRD functions. Theoretically,
the absolute value of the VRD functions estimated by using the following two
triggering conditions should be exactly equal due to symmetry:

¹P,1Y
v(t`Dt)

"Ma
k
)X

k
(t#Dt

k
))b

k
,2, a

l
)X

l
(t#Dt

l
))b

l
N, (32)

¹P,2Y
v(t`Dt)

"M!b
k
)X

k
(t#Dt

k
))!a

k
,2,!b

l
)X

l
(t#Dt

l
))!a

l
N. (33)

with the VRD functions denoted as Dv,1XX
kl
(q) and Dv,2XX

kl
(q), estimated by using

¹P,1Y
v(t`Dt)

and ¹P,2Y
v(t`Dt)

from equations (32) and (33), average and error VRD
functions can be estimated as

D< averageXX
k, l

(q)"(D< v,1XX
k, l
(q)!D< v,2XX

k, l
(q))/2, (34)

D< errorXX
k, l

(q)"(D< v,1XX
k, l
(q)#D< v,2XX

k, l
(q))/2, (35)
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By plotting the average and corresponding error VRD functions, the quality of the
VRD function can be validated. Alternatively, the root mean square of the error
VRD functions divided by the root mean square of the average VRD functions can
be used as a single measure of the quality of each VRD function.

3.3. EXPECTED NUMBER OF TRIGGERING POINTS

Due to the link between the VRD functions and the correlation functions, the
expected number of triggering points can be predicted by

N"

N
Time
f
s
P

b

a

py
v
(y

v
) dy

v
, (36)

where N
Time

is the number of points in the measurements minus the number of
points in the VRD functions and f

s
is the sampling frequency.

The prediction of the number of triggering points can be used in simulation
studies for exact prediction or in a real situation by choosing a proper correlation
matrix for Y

v
.

4. SIMULATION STUDY

The purpose of this example is to illustrate the theoretical developments in
section 3. A simple 3DOF linear lumped mass parameter system is considered. The
modal parameters of the system are given in Table 1.

The mode shapes are approximately in or out of phase. The 3DOF system is
loaded by uncorrelated white noise at each mass and 20 000 points are simulated at
a sampling interval of 0)045 s. Figure 2 shows the theoretical correlation matrix of
the response for positive time lags and Figure 3 shows the corresponding spectral
densities.

As seen from Figures 2 and 3, not all modes are well represented in all of the three
columns of the correlation matrix. This means that it will be very di$cult to
estimate all modes from a single or two correlation columns.

In order to estimate a set of VRD functions, an initial estimate of the "rst column
of the correlation matrix is performed using the traditional RD technique (level
crossing triggering). The estimation time in CPU-time was 0)05 s and the result is
shown in Figure 4.
TABLE 1

Modal parameters of 3DOF system

f (Hz) f (%) DU
1
D DU

2
D DU

3
D

1)00 2)00 1)000 0)084 0)006
3)00 2)00 !0)085 1)000 0)110
9)00 2)00 0)006 !0)110 1)000



Figure 2. Correlation functions of the response of the 3DOF system.

Figure 3. Spectral densities (absolute values) of the response of the 3DOF system.
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Figure 4. Initial estimate of the "rst column of correlation functions for decision of time shifts.

Figure 5. Theoretical VRD functions for positive and negative time lags.

Figure 6. Fourier transform of the VRD functions in Figure 4 (absolute values).
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The theoretical VRD functions using the optimal time shifts indicated by * in
Figure 4 are shown in Figure 5, and the Fourier transform of the theoretical VRD
functions is shown in Figure 6. The theoretical VRD functions can be predicted
from the correlation functions of the linear system loaded by the white noise and
the results derived in section 3.



Figure 7. Estimated VRD functions for positive and negative time lags.
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Figures 5 and 6 show that the VRD functions contain more information about
the 3 modes than the columns of the correlation functions. An estimate of the VRD
functions from the simulated response is shown in Figure 7.

The number of triggering points was 1440 and the expected number of triggering
points was 1600. The CPU estimation time of the VRD functions was 0)33 s. For
comparison the CPU estimation time of the full RD matrix using the traditional
RD technique was 2)80 s and the number of triggering points was approximately
3000 for each column in the correlation matrix. The triggering level were
[a

1
a
2
]"[p

X
R]. Figure 8 shows the average and error VRD functions as

suggested in section 3.2.
The dotted lines show that the error increases with the distance from time lag

zero. For the VRD function shown in the third sub plot, it is seen that for DqD'2 s
the VRD functions become too uncertain for extraction of modal parameters.

5. CONCLUSION

The Vector Random Decrement technique is originally interpreted as a method
for transforming ambient responses into free decays of linear structures. This paper
extends the theoretical background of the VRD functions by considering zero mean
Gaussian processes. The processes could for example be the response of linear
structures loaded by "ltered white noise. It is shown that the VRD function is a sum
of the correlation functions of the Gaussian processes. The mathematical modes of



Figure 8. Average and error VRD functions for positive and negative time lags.
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the shaping "lter and the physical modes of the linear system are represented in the
correlation functions. Therefore, the modes of both the linear system and the
shaping "lter can be identi"ed from the VRD functions. The VRD functions depend
on the size of the vector triggering condition and the time shifts used for the choice
of triggering condition. This result makes the theory of the VRD technique as well
developed as the theory of the RD technique.

A simulation study of a 3DOF system has been presented. The VRD technique
is illustrated and it is shown that the VRD functions may contain as much
information about the modes as the full correlation matrix of the processes.
Furthermore, the estimtion time of the VRD functions is much lower than the
estimation time of the full correlation matrix using the traditional RD technique
(0)50}2)80 s in CPU time).

The VRD technique can be an excellent choice of algorithm for the analysis
of data, where a large number of measurements is collected. It then becomes
very tedious to estimate the full correlation matrix using an FFT algorithm
or the traditional RD technique. By using the VRD technique, the information
from the full correlation can be compressed in the VRD functions at a faster
estimation time.
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